Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38002996

RESUMO

The neurobiological systems of maintenance and control of behavioral responses result from natural selection. We have analyzed the selection signatures for single nucleotide variants (SNV) of the genes of oxytocin (OXT, OXTR) and vasopressin (AVP, AVPR1A, AVPR1B) systems, which are associated with the regulation of social and emotional behavior in distinct populations. The analysis was performed using original WGS (whole genome sequencing) data on Eastern Slavs (SlEast), as well as publicly available data from the 1000 Genomes Project on GBR, FIN, IBR, PUR, BEB, CHB, and ACB populations (the latter were taken as reference). To identify selection signatures, we rated the integrated haplotype scores (iHS), the numbers of segregating sites by length (nSl), and the integrated haplotype homozygosity pooled (iHH12) measures; the fixation index Fst was implemented to assess genetic differentiation between populations. We revealed that the strongest genetic differentiation of populations was found with respect to the AVPR1B gene, with the greatest differentiation observed in GRB (Fst = 0.316) and CHB (Fst = 0.325) in comparison to ACB. Also, high Fst values were found for SNVs of the AVPR1B gene rs28499431, rs33940624, rs28477649, rs3883899, and rs28452187 in most of the populations. Selection signatures have also been identified in the AVP, AVPR1A, OXT, and OXTR genes. Our analysis shows that the OXT, OXTR, AVP, AVPR1A, and AVPR1B genes were subject to positive selection in a population-specific process, which was likely contributing to the diversity of adaptive emotional response types and social function realizations.


Assuntos
Ocitocina , Vasopressinas , Humanos , Ocitocina/genética , Genômica , Receptores de Ocitocina/genética , Receptores de Vasopressinas/genética
2.
Front Med (Lausanne) ; 10: 1178939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547597

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is heavily reliant on its natural ability to "hack" the host's genetic and biological pathways. The genetic susceptibility of the host is a key factor underlying the severity of the disease. Polygenic risk scores are essential for risk assessment, risk stratification, and the prevention of adverse outcomes. In this study, we aimed to assess and analyze the genetic predisposition to severe COVID-19 in a large representative sample of the Russian population as well as to build a reliable but simple polygenic risk score model with a lower margin of error. Another important goal was to learn more about the pathogenesis of severe COVID-19. We examined the tertiary structure of the FYCO1 protein, the only gene with mutations in its coding region and discovered changes in the coiled-coil domain. Our findings suggest that FYCO1 may accelerate viral intracellular replication and excessive exocytosis and may contribute to an increased risk of severe COVID-19. We found significant associations between COVID-19 and LZTFL1, FYCO1, XCR1, CCR9, TMLHE-AS1, and SCYL2 at 3p21.31. Our findings further demonstrate the polymorphic nature of the severe COVID-19 phenotype.

3.
Cells ; 11(19)2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230912

RESUMO

The coronavirus disease 2019 (COVID-19) is accompanied by a cytokine storm with the release of many proinflammatory factors and development of respiratory syndrome. Several SARS-CoV-2 lineages have been identified, and the Delta variant (B.1.617), linked with high mortality risk, has become dominant in many countries. Understanding the immune responses associated with COVID-19 lineages may therefore aid the development of therapeutic and diagnostic strategies. Multiple single-cell gene expression studies revealed innate and adaptive immunological factors and pathways correlated with COVID-19 severity. Additional investigations covering host-pathogen response characteristics for infection caused by different lineages are required. Here, we performed single-cell transcriptome profiling of blood mononuclear cells from the individuals with different severity of the COVID-19 and virus lineages to uncover variant specific molecular factors associated with immunity. We identified significant changes in lymphoid and myeloid cells. Our study highlights that an abundant population of monocytes with specific gene expression signatures accompanies Delta lineage of SARS-CoV-2 and contributes to COVID-19 pathogenesis inferring immune components for targeted therapy.


Assuntos
COVID-19 , COVID-19/genética , Expressão Gênica , Humanos , Fatores Imunológicos , SARS-CoV-2
4.
Genes (Basel) ; 13(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36292635

RESUMO

Variants of the MYH7 gene have been associated with a number of primary cardiac conditions, including left ventricular noncompaction cardiomyopathy (LVNC). Most cases of MYH7-related diseases are associated with such variant types as missense substitutions and in-frame indels. Thus, truncating variants in MYH7 (MYH7tv) and associated mechanism of haploinsufficiency are usually considered not pathogenic in these disorders. However, recent large-scale studies demonstrated evidence of the significance of MYH7tv for LVNC and gave rise to an assumption that haploinsufficiency may be the causal mechanism for LVNC. In this article, we present a family with isolated LVNC and a heterozygous splice variant of the MYH7 gene, analyze possible consequences of this variant and conclude that not all variants that are predicted truncating really act through haploinsufficiency. This study can highlight the importance of a precise assessment of MYH7 splicing variants and their participation in the development of LVNC.


Assuntos
Cardiomiopatias , Miocárdio Ventricular não Compactado Isolado , Humanos , Miocárdio Ventricular não Compactado Isolado/genética , Mutação , Coração , Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina/genética , Miosinas Cardíacas/genética
5.
Genes (Basel) ; 12(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418990

RESUMO

Familial hypercholesterolemia (FH) is a common autosomal codominant disorder, characterized by elevated low-density lipoprotein cholesterol levels causing premature atherosclerotic cardiovascular disease. About 2900 variants of LDLR, APOB, and PCSK9 genes potentially associated with FH have been described earlier. Nevertheless, the genetics of FH in a Russian population is poorly understood. The aim of this study is to present data on the spectrum of LDLR, APOB, and PCSK9 gene variants in a cohort of 595 index Russian patients with FH, as well as an additional systematic analysis of the literature for the period of 1995-2020 on LDLR, APOB and PCSK9 gene variants described in Russian patients with FH. We used targeted and whole genome sequencing to search for variants. Accordingly, when combining our novel data and the data of a systematic literature review, we described 224 variants: 187 variants in LDLR, 14 variants in APOB, and 23 variants in PCSK9. A significant proportion of variants, 81 of 224 (36.1%), were not described earlier in FH patients in other populations and may be specific for Russia. Thus, this study significantly supplements knowledge about the spectrum of variants causing FH in Russia and may contribute to a wider implementation of genetic diagnostics in FH patients in Russia.


Assuntos
Apolipoproteína B-100/genética , Predisposição Genética para Doença , Hiperlipoproteinemia Tipo II/genética , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Estudos de Coortes , Análise Mutacional de DNA , Variação Genética , Humanos , Hiperlipoproteinemia Tipo II/epidemiologia , Mutação , Federação Russa/epidemiologia , Sequenciamento Completo do Genoma
6.
Data Brief ; 16: 1034-1037, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29322084

RESUMO

Nanoparticles (NPs) have a number of unique properties associated with their ultrasmall size and exhibit many advantages compared with existing plant biotechnology platforms for delivery of proteins, RNA and DNA of various sizes into the plant cells (Arruda et al., 2015; Silva et al., 2010; Martin-Ortigosa et al., 2014; Mitter et al., 2017) [1], [2], [3], [4]. The data presented in this article demonstrate a delivery of biomolecules into Nicotiana benthamiana plant leaves using various types of NPs including gold, iron oxide and chitosan NPs and methods of biolistic bombardment and infiltration. The data demonstrate physical characteristics of NPs coated with fluorescently labeled protein and small RNA (size and zeta-potential) and visualization of nanocomplexes delivery into cells of N. benthamiana leaves by fluorescence microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...